Thyroid Follicular and C cells in Preclinical Toxicology

Thomas Rosol, DVM, PhD, DACVP
Veterinary Biosciences
Ohio State University, Columbus, Ohio, USA

01 November 2014
STP-India Meeting
Bangalore

Thyroid Gland

- Largest endocrine gland
- Devoted only to endocrine function
- Oldest gland phylogenically
 - All vertebrates, many invertebrates

NIS IHC: 2 mo. old Mouse

NIS IHC: 9 mo. old Mouse
Short Term Response of Follicular Cells To Increased TSH Secretion

Long Term Response of Follicular Cells To Increased TSH Secretion

Hypertrophy and Hyperplasia of Follicular cells (Goiter)

Goiter

- Major human health problem
- Predominantly due to iodine deficiency
- Estimated over 200 million people affected
 - Adults
- Iodine deficient regions
 - E.g., Great Lakes in USA

Goiter

- Ancient disease
 - Described for over 5000 years
- Historical interpretation
 - Sign of beauty
 - Punishment of gods
Goiter: Outcome

- Human
 - Diffuse Hyperplasia

- Rat
 - Diffuse hyperplasia
 - Focal hyperplasia
 - Neoplasia

- Dog
 - Diffuse hyperplasia

Goiter: Causes

- Deficient iodine intake
- Goitrogenic chemicals
- Genetic enzyme defects
- Iodine excess

Rat Thyroid Gland Tumorigenesis

Mechanisms to Disrupt Thyroid Function

- **Direct Thyroid Effect**
 - Inhibit Hormone Synthesis
 - Inhibit iodide uptake; inhibit TPO
 - Inhibit Hormone Secretion
 - Follicular Cell Cytotoxicity

- **Peripheral Effect**
 - Competition of thyroid hormone binding proteins
 - Inhibition of T_4 deiodination
 - Increased metabolism and clearance of T_4 or T_3

Thyroid Follicular Neoplasia

Humans

- Thyroid cancer: Most common endocrine malignancy
 - Incidence has risen in past 4 decades
 - Uncommon deaths
- Thyroid nodules are common
 - Palpable: 4-7% of adults
 - Ultrasound: up to 67%, usually women
 - Most are benign
 - 5-15% are malignant
Human Relevance Framework

Rat Thyroid Follicular Tumors

- Fundamental differences in thyroid hormone economy in rats
 - Rapid half-life of T₄
 - Lack of thyroid binding globulin
 - High TSH concentrations (greater in males)
 - Low secretion rate of T₄ (inherently less able to make T₄ compared to humans)
 - Sensitive to the tumorigenic effects of drugs that decrease T₄ or T₃
 - Robust TSH response decreased T₄ or T₃

Human Relevancy Framework

Thyroid Hormone Economy

- Rats (esp. males) have increased incidence of proliferative lesions compared to humans likely due to increased TSH concentrations
 - Male rats have higher TSH compared to females
- Rats have shorter half-life of T₄ (12-24 h) vs. 5-9 days in humans
 - Due to less high affinity binding globulin, TBG, in rats
- Rats require greater T₄ (20 µg/kg) compared to humans (2.2 µg/kg) to substitute for the thyroid gland

Rat Thyroid Gland

Thyroxine (T₄)

Serum Protein Binding

<table>
<thead>
<tr>
<th>Species</th>
<th>TBG</th>
<th>Postalbumin</th>
<th>Albumin</th>
<th>Prealbumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Monkey</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Dog</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Mouse</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Rat</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Chicken</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

TBG: Thyroxine (T₄) Binding Globulin
Prealbumin (Transthyretin, TTR)

Drug-Induced Tumors in Rodents
(order of prevalence)

- RATS
 - Thyroid
 - Liver
 - Testis
 - Mammary Gland
 - Adrenal
 - Pituitary

- MICE
 - Liver
 - Lung
 - Mammary Gland
 - Blood
 - Ovary
Tumorigenic Drugs in Rats (1)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Product Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>Antiarrhythmic</td>
</tr>
<tr>
<td>Atenolol</td>
<td>β-Adrenergic Blocker</td>
</tr>
<tr>
<td>Bepridil</td>
<td>Ca-Channel Blocker</td>
</tr>
<tr>
<td>Dapsone</td>
<td>Antineoplastic</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>Iodinated Glycerol</td>
<td>Expectorant</td>
</tr>
<tr>
<td>Methimazole</td>
<td>Anti-Thyroid</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Sedative</td>
</tr>
</tbody>
</table>

Tumorigenic Drugs in Rats (2)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Product Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenobarbital</td>
<td>Antiepileptic</td>
</tr>
<tr>
<td>Minocycline</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>Antianxiety</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>Ca-Channel Blocker</td>
</tr>
<tr>
<td>Sertraline</td>
<td>Antidepressant</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Hypolipidemic</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Diuretic</td>
</tr>
<tr>
<td>Vidarabine</td>
<td>Antiviral</td>
</tr>
</tbody>
</table>

Follicular Adenoma: Rat

Follicular Carcinoma: Rat

Inhibition of Hormone Synthesis

<table>
<thead>
<tr>
<th>Inhibition of Iodide Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Competition for NaI Symporter (NIS)</td>
</tr>
<tr>
<td>– Thiocyanate</td>
</tr>
<tr>
<td>– Perchlorate (ClO₄⁻)</td>
</tr>
<tr>
<td>• Rats more sensitive than humans, mice, rabbits</td>
</tr>
</tbody>
</table>

Inhibition of Thyroperoxidase (TPO)

<table>
<thead>
<tr>
<th>Inhibition of Thyroperoxidase (TPO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Organification of I₂ to tyrosine and coupling of iodotyrosines</td>
</tr>
<tr>
<td>– Thiourea: reduces I₂ to I⁻</td>
</tr>
<tr>
<td>• Inhibition of TPO</td>
</tr>
<tr>
<td>– Thioamides</td>
</tr>
<tr>
<td>• Propylthiouracil</td>
</tr>
<tr>
<td>• Mercaptoimidazole</td>
</tr>
<tr>
<td>• Methimazole, carbimazole, aminotriazole</td>
</tr>
<tr>
<td>• Sulfonamides, such as sulfamethazine</td>
</tr>
<tr>
<td>– Sulfonylureas (antidiabetic drugs)</td>
</tr>
<tr>
<td>– 1st generation: acetohexamide, chlorpropamide, tolbutamide, tolazamide</td>
</tr>
<tr>
<td>– Substituted phenols</td>
</tr>
<tr>
<td>• Resorcinol, salicylamide</td>
</tr>
</tbody>
</table>
Species Sensitivity to TPO inhibition by Sulfonamides

<table>
<thead>
<tr>
<th>Sensitive Species</th>
<th>Resistant Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Humans</td>
</tr>
<tr>
<td>Mouse</td>
<td>Primates</td>
</tr>
<tr>
<td>Dog</td>
<td>Guinea pig</td>
</tr>
<tr>
<td>Pig</td>
<td>Chicken</td>
</tr>
</tbody>
</table>

Inhibition of Hormone Secretion

Excess of Iodide, Lithium

- Excess of iodide
 - Decreased lysosomal proteases (humans)
 - Inhibition of colloid droplet formation (rats, mice)
 - Inhibition of TSH-mediated cAMP (dogs)
 - Excessive maternal intake of iodine
 - Goiter in offspring not adult
- Lithium
 - Inhibits colloid droplet formation by cAMP
 - Inhibits hormone release

Competition for Thyroid Hormone Binding Proteins

- Less important in species with TBG
- Binding to prealbumin (transthyretin)
 - Chlorophenols, chlorophenoxy acids, nitrophenols
- Decreased T_4 in rats
 - Pentachlorophenol, 2,4-dichlorophenoxyacetic acid (2,4-D), dimethox, and bromoxynil
- Decreased T_3 in rats
- Decreased T_4 and T_3 in rats
 - 2,4-D

Thyroid Hormone Deiodination

Activation and Metabolism

- $3,3',5'-T_4$ to $3,3',5'-rT_3$
- $3,5',3'-T_3$
- $3',5'-rT_3$
- $3,3'T_2$

5' (outer ring) - Deiodinase 2

- $5'D_2$
Thyroid Hormone Deiodination

Activation and Metabolism

- Deiodinase 1 (liver, kidney, thyroid)
 - Outer and inner ring deiodination
 - Substrates: rT₃ → T₄, T₃
 - Inhibited by propylthiouracil
 - Stimulated by T₃
- (5')-Deiodinase 2 (brain, pituitary, placenta, thyroid, skeletal muscle, brown fat)
 - Outer ring deiodination only
 - Major activating enzyme
 - Substrates: T₄ → rT₃
- Deiodinase 3 (brain, pregnant uterus, fetus, placenta)
 - Inner ring deiodination
 - Substrates: T₃ > T₄

Inhibition of Thyroxine (T₄) Deiodination

- T₄ functions as a prohormone
- Selenium deficiency
 - Se: cofactor for type I 5'-monodeiodinase
 - Lack of Se leads to decreased T₃ and increased T₄
- FD&C Red No. 3 and iopanoic acid
 - Inhibits type I 5'-monodeiodinase
 - Rats: Increased T₄, decreased T₃, increased reverse T₃, increased TSH
- Lipid peroxidation
 - Type I 5'-monodeiodinase

UDP-GT

Uridine 5'-diphospho-glucuronosyltransferase

- Important Phase II conjugative enzyme
 - Elimination of drugs and foreign chemicals
 - Not present in cats
- Transfers glucuronol from uridine 5'-diphospho-glucuronic acid to lipophilic substrates with O, N, S, or carboxyl groups
- Increases water solubility for renal excretion
Inducers of UDP-GT

Examples

- Phenobarbital (PB)
- Pregnenolone-16α-carbonitrile (PCN)
- 3-methylcholanthrene (3MC)
- Arochlor 1254 (PCB)

Effects of Microsomal Enzyme Inducers in Rats

<table>
<thead>
<tr>
<th>Compound</th>
<th>PB</th>
<th>PCN</th>
<th>3MC</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_4-UDP-GT</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>T_3-UDP-GT</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Serum T_4</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Serum T_3</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Serum TSH</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Thyroid Cell</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
<td>↔</td>
</tr>
</tbody>
</table>

Thyroid Cell Proliferation

CD Klaassen, Tox. Pathol., 2001

Endocrine Disrupters (EDCs) Thyroid Gland

- Endocrine Disrupter Chemicals
 - (anti)-estrogenic compounds
 - (anti)-androgenic compounds
 - Interference with steroidogenesis
- Dysregulation of thyroid hormones
 - Similar mechanisms as preclinical drug toxicity in rats
 - Assays
 - Rats (28-day, pubertal, adult male)
 - Amphibian Metamorphosis Assay

Amphibian Metamorphosis Assay

- Detect substances that interact with hypothalamic-pituitary-axis during development
 - Conserved thyroid structure in vertebrates
- Metamorphosis of *Xenopus Laevis* (African Clawed Frog) tadpoles
- Test for Endocrine Active Substances (EAS)
- OECD (Org. Economic Co-operation & Development guidelines)
 (www.oecd.org/dataoecd/44/52/40909207.pdf)
Nieuwkoop and Faber (N&F) Stages

- 21-day test
 - Hind limb length, development stage, thyroid histology
- Nieuwkoop and Faber (N&F) staging
 - 45-49: First form tadpole
 - 49-56: Second form tadpole
 - 56-60+: Third form tadpole

Human Relevance Framework

Thyroid Follicular Tumors: MOA & Key Events

↓ T4 or T3 (many mechanisms)

↓ Inhibition of thyrotropes in pituitary

↑ TSH secretion, thyro trope hyperplasia

Thyroid follicular cell hypertrophy

Colloid depletion

Increased cell proliferation

Hyperplasia

Mouse: TSH Cell Hyperplasia
(chemical inhibition of thyroxine synthesis)
Human Relevance Framework

Thyroid Follicular Tumors: MOA & Key Events

- Hyperplasia
- Adenoma
 - Carcinoma (death)
 - Metastasis (death)

Calcitonin

Calcitonin Synthesis and Secretion

Copyright: Thomas Rosol, Ohio State University 2014
Pathophysiology of Calcitonin Mammals

- No clinical conditions associated with calcitonin excess or deficiency
 - **Biomarker:** C-cell hyperplasia, tumors
 - Drug Tx: Hypercalcemia, osteoporosis

Calcitonin Content in Endocrine Glands

<table>
<thead>
<tr>
<th>Gland</th>
<th>Calcitonin Activity (MRC units/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utimobranchial</td>
<td>4000-6000</td>
</tr>
<tr>
<td>Salmon</td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>100-200</td>
</tr>
<tr>
<td>Pig</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td></td>
</tr>
</tbody>
</table>

Therapeutic Uses of Calcitonin

- Osteoporosis
- Analgesia in vertebral fractures
- Hypercalcemia - short lived effect

Salmon calcitonin
100 times more potent than human calcitonin

C-Cell Numbers

- Humans
 - < 1% of thyroid cells
 - May decrease with age
- Rats
 - 5% of thyroid cells
 - Increase to 10% after 120 days
 - Individual cells (intrafollicular and parafollicular)
 - Interfollicular clusters
 - increase in number and size with age

C-Cell Distribution: Rat Thyroid Gland

Martin-Lacave, Cell Tissue Res, 1992
Thyroid C-Cell Tumors

Species Occurrence

- Rat (F344, SD, WAG/Rij)
 - Higher incidence in females (Wistar)
 - OVX decreases CT synthesis and secretion
- Bull (ultimobranchial)
- Dog
- Mouse
- Horse
- Ferret (with islet cell tumors)
- Moufflon (sheep)
- Zebrafish (ultimobranchial)

Factors Influencing Development

Thyroid C-Cell
Proliferative Lesions

- Irradiation
- Vitamin D
- High Dietary Calcium

Thyroid C-Cell Proliferative Lesions

Diffuse C-Cell Hyperplasia

Focal C-Cell Hyperplasia
C-Cell Carcinoma

C-Cell Histopathology: Mice

- Use immunohistochemistry
 - Normal C-cells
 - Diffuse hyperplasia
 - Early focal hyperplasia

- Can only see focal hyperplasia and tumors in routine histopathology

Mouse: Normal

Diffuse Hyperplasia
Tumorigenic Drugs in Rats

<table>
<thead>
<tr>
<th>Drug</th>
<th>Product Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exenatide</td>
<td>GLP-1R agonist (F)</td>
</tr>
<tr>
<td>Liraglutide</td>
<td>GLP-1R agonist (M/F)</td>
</tr>
<tr>
<td>Aledronate</td>
<td>Bisphosphonate (M)</td>
</tr>
<tr>
<td>Arformoterol</td>
<td>β_2 receptor agonist (F)</td>
</tr>
<tr>
<td>Atenolol</td>
<td>β_2 receptor agonist (M)</td>
</tr>
<tr>
<td>Colesevelam</td>
<td>Bile acid sequestrant (F)</td>
</tr>
<tr>
<td>Naratriptan</td>
<td>5-HT$_{1D/1B}$ receptor antagonist (M/F)</td>
</tr>
<tr>
<td>Palonosetron</td>
<td>5-HT$_3$ receptor antagonist (F)</td>
</tr>
</tbody>
</table>

Tumorigenic Drugs in Mice

<table>
<thead>
<tr>
<th>Drug</th>
<th>Product Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td>GLP-1R Agonist (M/F)</td>
</tr>
</tbody>
</table>

(likely class effect)

Glucose Homeostasis

Fasting vs. Postprandial

- **Fasting glucose level**
 - Insulin
 - Glucagon
- **Postprandial glucose level**
 - Incretin (GI) hormones
 - GLP-1 (glucagon-like peptide-1)
 - GIP (gastric inhibitory polypeptide; glucose-dependent insulinotropic polypeptide)
 - Only GLP-1 increases insulin in diabetics

GLP-1

Very Short Half-Life in Blood

- Half-life: 1-5 minutes
- GLP-1 (7-36) amide and 7-37 forms
- Degraded by plasma DPP-4 (dipeptidyl peptidase-4)
 - DPP-4 inhibitors: Limited ability to increase GLP-1

Calcitonin Secretion in Mice

Knudsen et al, Endocrinology, 2010
Exenatide (Byetta®)

- First GLP-1 agonist (2005)
- Synthetic form of exendin-4
 - Isolated from Gila monster salivary glands
 - 50% homology to human GLP-1
 - Longer half-life in humans
- Adjunctive therapy for DM
- Twice daily injections

Long-Acting GLP-1 Agonists

- Liraglutide (Victoza®)
 - Modified rGLP-7-37 with palmitic acid moiety
 - Once daily injection
- Bydureon®
 - Exenatide and microsphere formulation
 - Once weekly injection
- Dulaglutide (once weekly)
 - GLP (7-37) linked to Fc IgG fragment
- Albiglutide (once weekly or biweekly)
 - GLP-1 dimer fused to albumin
- Lixisenatide (once daily)

C-cells and GLP-1 agonists

Rats and Mice

- C-cell hyperplasia
 - Diffuse
 - Focal
- C-cell adenomas
- C-cell carcinomas
- Rats are more sensitive than mice

Human Relevance Framework

C-cell Tumors in Rodents: Mode of Action & Key Events

- Drug binding to GLP-1R on C-cells
 - ↑ Cytoplasmic cAMP & CT secretion
 - ↑ C-cell proliferation
 - ↑ C-cell diffuse hyperplasia
 - ↑ C-cell focal hyperplasia
 - ↑ C-cell adenomas
 - ↑ C-cell carcinomas

GLP-1R in Rodent C-cells

Weight of Evidence Approach

- Immunohistochemistry
- In situ hybridization
- Receptor binding in vivo
- Downstream effects in rodent C-cell lines and not in human C-cell lines
- Lack of findings in dogs and NHP
- Lack of downstream and proliferative effects in GLP-1R KO mice

GLP-1 Agonist-Induced C-cell Proliferation in Rodents

- Rodent-specific effect (?)
- Receptor expression greatest in rodents
- GLP-1R KO mice confirm role of receptor
 - Physiologic role in rodents
- No proliferation in dogs and NHP
- No increase in calcitonin in dogs and NHP
- Equivocal or no increase in calcitonin in humans
- *Long-term effect in humans need to be monitored*